Dacha farming: field mapping, crop rotation

Read the previous part: Devices and methods in an adaptive landscape farming system

Adaptive landscape farming system - is a means of managing the regimes of the agricultural landscape (garden plot), which gives a certain compromise between obtaining the planned amount of vegetables, fruits of a certain quality and the natural stability of the agricultural landscape and the agroecosystem as a whole.

Therefore, adaptive landscape technologies make it possible to carry out work at the level of soil self-cleaning, obtaining high-quality products and protecting the natural environment of horticulture. At the same time, self-cleaning of the entire landscape is achieved, that is, the ability to automatically process (sort, precipitate, decompose, etc.) and remove pollutants that enter it outside the gardening area.

The adaptive landscape farming system consists of seven main agricultural and plant growing elements, which, starting with this article, we begin to consider in detail and in order:

  • Scientific organization of the territory - a summer residence, a vegetable garden or a large farm.
  • The structure of crops and crop rotations.
  • Fertilizer system.
  • Tillage system.
  • Crop cultivation technologies.
  • Application of certain seeds and varieties.
  • Application plant protection products.

First, let's dwell in detail on the first stage - the scientific organization of the territory of the summer cottage.

Of all the aspects of the scientific organization of the garden plot, the main ones are the collection of initial information on soil fertility and mapping of the territory on its basis.

For determining soil fertility you can use both the data of agrochemical analyzes of the soil, and accounting for the total biological productivity of a particular soil. The smallest island on which it is possible to determine the biological productivity of the soil is an area of ​​1 m². One row plant usually grows on such an island, this is the optimal feeding area for many agricultural plants, therefore, it is necessary to collect information on soil fertility separately from each square meter of the garden and vegetable garden.

There are a lot of methods for collecting initial information. One of them was described in a previous article on the pages of the magazine, where modern and very expensive devices were used.

The second method is available to some gardeners, it is the most accurate, but also the most expensive - it is carrying out agrochemical analyzes of the soil from each square meter of the site.

The third method, which is widely available to gardeners, is to account for the biological yield of growing plants by weighing them, since the plant yield is the final integrated result of the interaction of all its factors, plant growth and development.

To obtain information about soil fertility, it is necessary to carry out preparatory work - to fix in nature and on a plan (on paper) elementary plots of 1 m², carry out a "chess" mapping and assign a name to each square. First, a grid of squares is drawn on the paper like a checkerboard. On the narrow side, the squares are designated by the letters of the Russian alphabet, on the wider side - by numbers in order.

Thus, all squares will be encrypted, like fields in chess, for example, e2 or g3. In nature, along the perimeter of the site, you need to place pegs every meter, make inscriptions on them in letters and numbers, as on paper in the drawing. Twine is pulled between opposite pegs during harvesting and agrotechnical work, a grid of squares is obtained, which allows you to accurately remove and weigh the crop separately from each square.

The work is carried out in summer or autumn, during the flowering of plants or when harvesting. The biological mass of plants, cultivated plants or weeds is cut and accurately weighed, the results are recorded in the appropriate box on paper (crop name and weight). After accounting for the harvest, the twine can be rolled up and left on the borders of the site until spring, before sowing plants and applying fertilizers, such a binding will allow work to be carried out exactly on each square individually.

Further, on the basis of the data obtained, the territory is mapped, visual cartograms of soil fertility are compiled, the diversity of soil fertility is revealed. As a reference material for this, agrochemical soil data and their assessment are given (see table 1).

This is done this way: we find in the lines of paragraph 2 or 3 the column corresponding to our data (for accounting for the harvest or for agrochemical analyzes), and in paragraph 4 we read the conclusions about the level of soil fertility and the corresponding color. With a low fertility, the cell on the map is painted red, with an average - in green, and with a high - in blue. The result is a colored soil fertility map. It can be very variegated - this is bad, but it can be of the same color, it is better. If, for example, the cartogram is colored blue, this indicates that this territory has fertile soil and is suitable for the development of landscape agriculture.

If only one biological yield is taken into account, one general cartogram is drawn up. According to the data of agrochemical analyzes, four cartograms are compiled: soil acidity (pH), humus content, mobile forms of phosphorus and potassium, which will be used to determine fertilizer doses... Colored cartograms confirm that the design of optimal agricultural landscapes for soil fertility in the garden plot has been completed, and it will be possible to start drawing up a sowing plan and crop rotations, calculating fertilizer doses, i.e. to further work on the development of an adaptive landscape system.

Table 1. Agrochemical data on soil fertility and cropping systems
The name of indicatorsIndicators, doses and ratios
1. Description of the situation with the applied systems and technologies
Farming systemsprimitiveintenseadaptive landscape
Cultivation technologiesrandomintenseenvironmentally friendly
Share of soil in cultivation,%0-1515-7070-100
Weed infestationsolidin placesabsent
Economic assessment of agricultureunprofitablefineprofitable
Ecological situationdangerousnear normalsafe
Usefulness of products for healthlowoptimalhigh
2. Biological productivity of the soil.
Grain yield, kg / m20-0,20,2-0,40,4-0,6
Productivity of green mass, kg / m²0,3-1,21,2-3,03,0-5,0
Hay yield, kg / m²0-0,230,24-0,60,5-0,8
Carrot yield, kg / m²0-3,03,0-5,05,0-7,0
Cabbage yield, kg / m²0-4,04,0-7,07,0-10,0
Potato yield, kg / m²0-2,02,0-3,53,5-5,0
Arable layer thickness, cm10-2020-2525-30
3. Agrochemical characteristics of the soil.
Humus content,%up to 22-33-5
Soil acidityhighaverageweak
Content P2ABOUT5, mg / 100g5-2020-3030-45
Content K2О, mg / 100g7-1515-2020-35
4. Conclusions:
Soil fertilitylowaveragehigh
Color on the mapredgreenblue
Continue reading: Determining the structure of crops and crop rotations

Gennady Vasyaev, Associate Professor,
Chief Specialist of the North-West Scientific Center of the Russian Agricultural Academy,

Olga Vasyaeva, amateur gardener

Previous Article

Paving slab designer

Next Article

Maca: properties and characteristics